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ABSTRACT 
In the hardware/software design of control systems it is almost an 
article of faith to decompose a system into loosely coupled 
subsystems, with state variables encapsulated in device and 
subsystem objects. The engineering advantages of such an 
approach are so attractive that it is sometimes applied 
inappropriately, yielding a design that hides a tangle of special-case 
subsystem-to-subsystem couplings behind a façade of modular 
decomposition. The limitations of a subsystem/device architecture 
become apparent in the design of high-risk control systems—such 
as nuclear power plants and planetary rovers—where the world is 
full of physical side-effects that have little “respect” for 
conventional subsystem boundaries. Here, the very notion of 
decomposition by subsystem, and its attendant state encapsulation, 
actually complicates the design. Fundamentally, there is a clash 
between a subsystem-device-object metaphor and the laws of 
physics. A more appropriate architectural approach is to 
acknowledge the underlying physics and to elevate the concepts of 
state and models to first-class design elements that are not 
encapsulated within subsystem objects. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – 
domain-specific architectures, information hiding.  

General Terms 
Design.  

Keywords 
Encapsulation, isomorphism, state, model, control system, 
design, architecture. 

1. INTRODUCTION 
Software systems vary enormously in the extent to which they 
interact with the physical world and deal with its subtleties. At 
one extreme are enterprise applications such as management 
information systems that deal primarily in a tidy world of data 
management, queries, and reporting. Such systems are typically 
deployed in an environment of plentiful resources — plenty of 
data storage, network throughput, electrical power, and air 
conditioning. In such an environment most physical side effects 
can be safely ignored. For example, powering up a disk drive in a 
server room consumes power, generates heat, and imparts a 
rotational torque on the disk drive assembly. These are real 
physical effects, but we can safely ignore them as irrelevant side 
effects when the resources that they affect are virtually unlimited. 
In this situation, power and air conditioning and rotational inertia 
are all virtually unlimited. 
At the other extreme are resource-limited robots such as 
unmanned spacecraft and Mars surface rovers. Since the amount 
of mass launched into space is a major cost driver for space 
missions, these systems are engineered to carry only enough 
resources to accomplish mission objectives, plus a small margin. 
Mission activities must be designed to operate within tightly 
engineered constraints on electrical power, battery energy, non-
volatile memory, communication link throughput, and many other 
resources. For example, turning on a camera to take pictures 
draws from a limited power budget, consumes non-volatile 
memory to store images, and requires the rover basebody to be 
pointed appropriately. This activity uses precious resources that 
are then not available to other activities. The net result is that in a 
resource-limited system many physical side effects become non-
negligible and therefore must be consciously managed; designs 
become more complex because the couplings are more numerous 
and often cross conventional subsystem boundaries.  
This paper compares two architectures with respect to their 
suitability for resource-limited control systems. One architecture 
is subsystem/device-oriented, having objects associated with 
hardware units, such as drive motors and camera, plus objects 
associated with traditional engineering subsystems such as 
electrical, thermal, and navigation subsystems. This architecture 
encapsulates state variables inside such objects—objects that 
logically seem to “own” those state variables. The other 
architecture is state/model-oriented, having first-class objects 
associated with physical states, such as camera temperature and 
battery energy, plus objects associated with models of physical 
couplings, such as the effect of a heater on power consumption 
and the effect of temperature on a sensor measurement. Despite 
the appeal of decomposition by subsystem, the structure of a 
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subsystem/device architecture depends on an assumption of loose 
coupling that simply doesn’t hold in the realm of resource-limited 
systems. Such systems must manage numerous tight couplings of 
the real world. Dealing with this in a disciplined way demands an 
architecture that acknowledges and adequately represents the 
underlying physics of the world.  

2. DEVICE/SUBSYSTEM ARCHITECTURE 
Most physical systems that people deal with on a daily basis are 
designed as a composition of modular subsystems that interact in 
a few obvious and easily controlled ways. Such systems are easier 
to understand, easier to monitor and control, and easier to 
diagnose when faulty. For example, the different subsystems of a 
modern home—electrical, heating/cooling, plumbing, telephone, 
and cable—are relatively independent of each other, with only a 
few important forms of coupling. In truth, there are many physical 
couplings among these subsystems, but most are negligible. For 
example, the electrical subsystem is a source of electromagnetic 
interference to the telephone and cable subsystems, but the signal-
to-noise ratio is high enough that the effects can be ignored. 
Similarly, the circulation of hot water in the plumbing system 
affects the heating/cooling system, but the effect is negligible 
compared to the heating/cooling subsystem’s ability to notice and 
compensate. These and other physical effects are negligible 
because the system has abundant resources: plenty of electrical 
power, abundant heating/cooling capacity, large thermal mass, 
substantial electrical and thermal insulation, plenty of 
electromagnetic shielding, etc. 
In such an environment of plentiful resources, control system 
software designers can appropriately treat subsystems as largely 
independent, with state variables encapsulated in the subsystem or 
device object that has the dominant effect or “ownership” of that 
state. For example, hot water temperature could be encapsulated 
with a water heater object since the water heater has the dominant 
effect on that state. Of course, there are some subsystem couplings 
that cannot be ignored because they have intentional effects or 
major side effects. For example, an electric hot water heater 
depends on power from the electrical subsystem in order to 
operate, so this one-way dependency must appear somewhere in 
the system logic. This kind of subsystem coupling is so simple to 
describe and so few in number that it’s typical for a software 
designer to express it on a case-by-case basis, often in the logic of 
one or two operations of a class. Figure 1 shows an ideal 
decomposition by subsystem, where the only couplings are those 
between a child subsystem and its parent subsystem. 

2.1 Example: Home Heating System 
An illustrative example of the subsystem/device approach to 
control systems is the “Smalltalk Home Heating System” 
described by Booch [1, chapter 8]. As Booch notes, the home 
heating system naturally decomposes into relatively independent 
subproblems. The heating system contains top-level objects of a 
furnace, heat flow regulator, operator interface, and a home 
consisting of multiple rooms. Each room has a current 
temperature sensor, a desired temperature setting, a room 
occupancy sensor, and a water valve.  
Note that top-level software objects model the obvious physical 
elements of a home heating system, and that makes sense as long 
as most or all of the couplings exist within containment and/or 
attachment relationships. For example, in this system there is 
nothing outside of a room that affects the measurements from the 
current temperature sensor, so it makes sense to encapsulate the 

current temperature state within the room or its temperature 
sensor. 
In summary, a device/subsystem architecture is appropriate for 
many everyday control systems because they exhibit simple 
subsystem couplings. Such an architecture is extremely attractive 
to most designers because software structure reflects hardware 
structure and follows familiar subsystem-oriented decomposition. 
The only danger, which this paper explores, is that designer 
familiarity with this appealing architecture can lead to its use in 
applications where physical couplings are complex and have little 
“respect” for the hardware structure and subsystem boundaries. 

2.2 Couplings Due to Physics 
The limitations of a subsystem/device architecture aren’t apparent 
in “everyday systems” in much the same way that the limitations 
of Newtonian physics aren’t apparent in everyday experiences, 
where velocity is a tiny fraction of the speed of light. In the case 
of the subsystem/device architecture the limitations start to appear 
in complex systems where the everyday assumptions of loose 
coupling simply don’t hold. To illustrate this point, consider a 
common, everyday device: a battery-powered electronic 
thermostat. 
The job of a thermostat is to regulate temperature by sensing the 
temperature and by issuing on/off control actions to maintain 
temperature within a specified range. The thermostat itself is a 
self-contained hardware unit with two simple couplings: it senses 
ambient temperature and it opens and closes electrical contact 
between two terminals. Since we’re talking about software design, 
let’s assume that this electronic thermostat has a microprocessor 
running software that performs the temperature regulation. This 
looks like a perfect example of a hardware device that is loosely 
coupled with respect to an overall heating system, and indeed it is 
if that’s an everyday home heating system. 
Now consider the same task of temperature regulation, but in a 
very different environment: a Mars rover. Two things make this 
system very different: electrical power is extremely limited due to 
battery and solar panel limitations, and fault protection is a major 
concern since there are no repair technicians on Mars (as far as we 
know ☺). A consequence of limited power is that temperature 
regulation cannot be treated as an isolated activity; it has to be 
coordinated with other power-consuming activities such as 
driving, communication, and science instrument usage. Thus, as 
much as we would like to think of temperature regulation as the 
duty of a self-contained thermostatic unit, it can’t be designed that 
way when it relies on the availability of an extremely limited 
resource.  
In a similar way, designing for fault protection reveals other flaws 
with the idea of a loosely coupled thermostat. For example, if the 
temperature sensor fails, how do you estimate ambient 
temperature? Well, thanks to physics, there are other sources of 
evidence about temperature that can and should be used. For 
example, the recent history of the heater’s on/off state provides 
important evidence about heating. The position of the Sun and its 
heating effect can be predicted with a thermal model. Likewise, 
power usage of nearby instruments and other devices has a 
heating effect that can be predicted, provided that those power 
states are accessible. Now, our once-simple thermostat has a lot 
more couplings and a lot more to think about. Also, suppose that 
the heater fails. How then can you control temperature? Well, 
again, physics offers the clues. One way may be to turn on nearby 
instruments solely for their heating effect, subject to power 



availability. Another way is to reschedule activities that depend on 
temperature regulation to occur during mid-day on Mars when 
solar heating is at a maximum. Again, our once-simple thermostat 
is being asked to exercise control that goes far beyond its original 
role in the “thermal subsystem”. The very concept of a self-
contained thermostat is falling apart because its design rests on an 
assumption of loose coupling that simply doesn’t hold in this 
more complex domain. 

3. COUPLING AND URGENCY 
In a significant book that analyzed accidents in complex systems 
such as Apollo 13 command module and the Three Mile Island 
nuclear power plant, Perrow [4] summarized the inherent risks in 
different types of systems using a Coupling/Urgency chart1, as 
shown in Figure 2. The horizontal axis of coupling ranges from 
linear to complex. Linear couplings are those in expected and 
familiar production or maintenance sequence, and those that are 
quite visible even if unplanned. Complex couplings are those of 
unfamiliar sequences, or unplanned and unexpected sequences, 
and either not visible or not immediately comprehensible. As 
Stevens et al [5] explain, “strong coupling complicates a system 
since a module is harder to understand, change, or correct by itself 
if it is highly interrelated with other modules.” 
The vertical axis of urgency ranges from low to high. Low 
urgency systems can incorporate shocks and failures and pressures 
for change without destabilization. Low urgency systems tend to 
have ambiguous or perhaps flexible performance standards. High 
urgency systems have more time-critical processes: they cannot 
wait or stand by until attended to. Chemical reactions, as in 
pharmaceutical plants, are almost instantaneous and cannot be 
delayed or extended. 
The placement of systems on this chart is based entirely on 
Perrow’s subjective judgments because there is no standard way 
to measure the two variables of coupling and urgency. 
Nonetheless, the chart offers a useful qualitative comparison of 
different kinds of systems, and the history of system-level 
accidents supports his finding that complex couplings and high 
urgency make systems more prone to mishaps. 
This paper focuses on coupling as an architectural driver. While 
the time-sensitive aspect of urgency is certainly important in 
system design, it is not the main point of this paper. 

3.1 Coupling in Space Missions 
As Figure 2 shows, space missions exist in the upper right 
quadrant of complex coupling and high urgency. Systems in this 
quadrant are at the highest risk for system-level accidents because 
they are harder to design and operate correctly. 
Space missions exhibit complex coupling because many resources 
are severely limited. Some limitations, such as battery energy and 
solar panel power production, are due to the high cost of 
launching mass into space. Smaller batteries and smaller solar 
panels help reduce that cost. Other limitations such as processing 
speed and instrument usage ensue from the power limitation; 
running the processor at a lower clock rate and using one 
instrument at a time reduces power consumption. Still other 
limitations arise from the vast distances of outer space, where data 
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uses the terms ‘coupling’ and ‘urgency’ in place of Perrow’s 
‘interaction’ and ‘coupling’, respectively. 

communication rates fall as the square of the distance between 
transmitter and receiver. That means that it takes a long time to 
transmit data, and that activity typically precludes other activities 
while the antenna is carefully pointed at a moving target (such as 
Earth). Antenna pointing usually depends on basebody pointing, 
which is another managed resource. 
Coupling occurs in many ways, including coupling through shared 
busses, structure, thermal proximity, grounding, environment, and 
so on. Most couplings are a direct consequence of system-level 
design, such as an instrument that will be damaged if it is in the 
wrong mode when thrusters fire. In addition, some couplings 
result from hardware design flaws that are discovered too late to 
fix, prior to launch. Examples include motor commands that cause 
processors to do a power-on-reset and communication busses that 
lock up when the wrong combination of units is active. To 
exaggerate just a bit, in a resource-limited system “everything 
affects everything”. 

3.2 Problems of Device/Subsystem Approach 
The main problem in applying a device/subsystem architecture to 
resource-limited systems is that the architecture provides no 
leverage in dealing with the many non-negligible inter-subsystem 
couplings. Each such coupling has to be handled as a special case, 
leading to a tangle of subsystem-to-subsystem interactions hidden 
behind a façade of modular decomposition. In effect, the original 
architecture becomes an appealing fiction. 
If a system is to be controlled efficiently then these couplings 
must be taken into account, for otherwise some less efficient 
scheme would have to be used in a loosely-coordinated manner. 
An example of the latter in spacecraft operations has been to 
reserve generous resource margins to ensure that a desired activity 
succeeds in spite of its side effects on limited resources. For 
example, operators may hold a 25% power margin above and 
beyond the predicted needs of the planned activities. This 
conservative strategy is understandable given the unforgiving 
nature of outer space, but it causes a spacecraft or rover to be 
significantly underutilized relative to its potential. 
Interestingly, the practice of iterative development coupled with a 
subsystem decomposition can lead a project into a kind of 
architectural trap. Iterative development enables a team to 
demonstrate early progress and gain confidence by building a 
solution to a simplified problem, and then iterating to extend and 
refine the design. Unfortunately, the initial simplifying 
assumptions may be quite compatible with subsystem 
decomposition, leading the project into an architecture that fails to 
help when it is needed most—late in the development lifecycle 
when high-fidelity behavior must be achieved. As new iterations 
require higher fidelity behavior, new couplings that cross device 
and subsystem boundaries must be handled. Each one by itself is a 
small blemish on an otherwise tidy architecture, but achieving true 
high-fidelity behavior for the final delivery can overshadow the 
original architecture with a mess of strapped-on couplings.  

4. STATE/MODEL ARCHITECTURE 
If a subsystem/device architecture is problematic for resource-
limited systems, then what’s a better approach? At a minimum, it 
has to be an approach that facilitates a software description of 
physical interactions, since management of those interactions is a 
dominant force in the design of resource-limited systems. It has to 
describe how things affect each other in the physical world, and 
this is exactly the role of models in the state/model architecture. 



As described below, there are three kinds of effects to model: 
measurement effects, command effects, and state effects. These 
models exist to support state estimation and state control, 
described later. 
Just as the notion of model is elevated to a first-class entity, so 
also is the notion of state variable. Many state variables have no 
obvious encapsulating home within a subsystem-oriented 
architecture because many physical influences on their values 
have no “respect” for boundaries drawn by subsystem designers. 
Such state variables must stand on their own, apart from 
subsystems. The notion of state used here is broad, including 
many kinds of physical quantities such as temperature, pressure, 
switch position, device health, and position of one body relative to 
another. Together, state variables and models provide the means 
for describing physical interactions in software. 

4.1 State Variables 
In the realm of control systems, state variables are what system 
engineers identify and what operators monitor and control. 
Example states include the on/off position of a power switch and 
the orientation of a spacecraft. “State knowledge” always has 
associated uncertainty because sensors are imperfect, as are our 
models of how things work. Explicit representation of uncertainty 
enables estimators to be honest about the evidence and controllers 
to be cautious during periods of high uncertainty. 

4.2 Models 
4.2.1 Measurement Effects Models 
Sensors are hardware devices that produce measurements. Most 
real-world sensors are designed to measure a particular physical 
quantity, but they inadvertently and/or unavoidably measure other 
quantities. For example, a voltage sensor will produce a voltage 
measurement, but its value may be sensitive to temperature and 
magnetic field strength. Its value is also sensitive to its own 
calibration parameters of bias and scale factor. Finally, its value is 
affected by the sensor’s health state, which may be in any of 
several failure modes.  
A measurement model is a mapping from state(s) to measurement. 
In the example above, the voltage sensor’s measurement model is 
a function of six states: voltage, temperature, magnetic field 
strength, sensor bias, sensor scale factor, and sensor health. Notice 
that temperature and magnetic field strength are external 
influences on the voltage measurements. Hence, this measurement 
model expresses two interactions that are independent of a 
subsystem hierarchy. 

4.2.2 Command Effects Models 
Actuators generate physical effects in response to commands. In 
addition to their intended effect, many actuators have unintended 
and/or unavoidable side effects. For example, a command to turn 
on a science instrument on a Mars rover has the desired effect of 
activating the instrument, but it also draws power from a limited 
supply, it causes localized heating that may affect other things 
(such as the voltage sensor mentioned previously), it may generate 
a magnetic field that interferes with another instrument, and it 
may start transmitting on the data bus, using up part of its limited 
capacity. Finally, the effects always depend on the actuator’s 
health state, which may be in any of several failure modes. 
A command effects model predicts the multiple effects of a 
command issued to an actuator in a given state. In this example 
the command effects model must predict the effect of a particular 

command on the values of five states: instrument activation state, 
battery power, nearby temperature, nearby magnetic field, and bus 
data rate. Notice that all of these effects, except for instrument 
activation, are external to the instrument. Hence, this model 
expresses four couplings that would violate an idealized 
subsystem hierarchy. 

4.2.3 State Effects Models 
In the physical world some states affect other states according to 
laws of physics and/or consequences of hardware design. For 
example, Boyle’s ideal gas law expresses the relation between 
pressure state, volume state, and temperature state (PV = nRT). 
Similarly, the voltage drop across a resistor in an electrical circuit 
is a consequence of Ohm’s law (V=IR). Likewise, the open/closed 
state of a valve affects flow state as well as both downstream and 
upstream pressure states.  
A state effects model expresses such functional relations among 
states, and just as with measurement effects models and command 
effects models, the effects often span subsystem boundaries. 
Further, these are not necessarily just one-way effects; the ideal 
gas law describes a constraint that holds among multiple 
variables, any of which may be controllable or uncontrollable in a 
given system. 

4.3 Estimators and Controllers 
The three kinds of models described above provide a disciplined 
way of representing interactions that must be reasoned about in 
resource-limited systems. Accordingly, the architecture should 
elevate the concepts of state and models as first-class elements so 
that the numerous inter-subsystem couplings can be exposed and 
represented, not concealed through back-door device-to-device 
and subsystem-to-subsystem connections.  
Such an architecture must perform state determination and state 
control somewhere, but in general it can’t be done inside device or 
subsystem objects because they don’t have sole ‘ownership’ of the 
states. As the preceding sections on models illustrated, for any 
given state there may be different measurements from different 
sensors that provide evidence about its value. Likewise, for any 
given state, there may be different commands to different 
actuators that can affect its value. 
These simple facts suggest that estimators and controllers also 
need to be first-class architectural elements, distinct from the 
software objects for sensors and actuators and their aggregations. 
After all, if there are multiple sources of evidence about a state’s 
value, there should be one entity that combines that evidence into 
an estimate. Likewise, if there are multiple ways of influencing 
the value of a state, there should be one entity that has overall 
responsibility for controlling that state. 
Estimation and control are seen as distinct elements in this 
architecture and should not be combined, as is often the case in a 
subsystem approach. The simplest reason is clarity and 
correctness; it is easier to design, develop, and test two software 
modules where each has a single purpose than one module that 
tries to do two distinct things.  
The job of an estimator is to update state knowledge by 
interpreting many sources of evidence—from measurements, 
commands, and state variables—given models of how things 
work. Evidence may be noisy, inconsistent, corrupted, and 
incomplete. In contrast, the job of a controller is to issue 
commands, as appropriate, in an attempt to influence the value of 



a state variable to satisfy a goal. Commands may have delayed 
effects and actuators may fail. 
A second reason for separating estimation from control is more 
subtle; when the two tasks are combined, there is a temptation to 
shortcut the estimation process and never actually estimate the 
state to be controlled, but rather to modify flags and counters that 
the control logic “understands”. This practice leads to systems that 
are hard for operators to monitor and understand because many 
key states are never explicitly estimated, and so the only way to 
understand them is to read the code. 

4.4 Hardware Adapters 
In this architecture the role of the hardware device object has been 
diminished as compared to the subsystem/device architecture. Its 
main role now is to provide access to the hardware sensors and 
actuators. Estimators obtain measurements from sensors as inputs 
to the state estimation process, and controllers submit commands 
to actuators to influence physical state. In many cases, state 
variables that seem to be owned by a device should not be 
encapsulated in such objects because fault diagnosis reasoning 
within estimators and fault response logic within controllers often 
need access to such “internal” states. 

4.5 Mission Data System 
The state/model architecture just described is the architecture of 
the Mission Data System (MDS). Although MDS is broadly 
applicable to control systems, it is particularly suited for resource-
limited control systems such as unmanned spacecraft and 
planetary rovers [2]. The MDS architecture can be understood in 
terms of a few basic elements, as depicted in Figure 3.  

• State. The MDS architecture is fundamentally state-based. 
States are what system engineers identify, what software 
engineers design and implement, and what operators monitor 
and control. Example states include the on/off position of a 
power switch and the orientation of a spacecraft. “State 
knowledge” always has associated uncertainty because 
sensors are imperfect, as are our models of how things work. 
Explicit representation of uncertainty enables estimators to 
be honest about the evidence and controllers to be cautious 
during periods of high uncertainty. 

• Models. Much of what makes software different from 
mission to mission is domain knowledge about instruments, 
actuators, sensors, wiring, plumbing and many other things. 
By expressing such knowledge in inspectable models, apart 
from reusable software, the task of customizing MDS for a 
mission, then, becomes more a task of defining and 
validating models. Importantly, measurement models, 
command effects models, and state effects models provide an 
architectural basis for representing couplings. 

• Goals. Goals are the basis for mission operations. A goal 
specifies operational intent as a constraint on the value of a 
state variable during a time interval. Importantly, a goal does 
not specify actions needed to accomplish it, thus leaving 
options open for autonomous control mechanisms. Goals 
enable operators to focus on what to accomplish rather than 
how to accomplish it. Active goals live in a goal network that 
specifies parent/child relationships and timing & ordering 
relationships. 

• State control. State control encompasses the mechanisms 
devoted to goal achievement. This includes elaboration of a 
goal into subgoals, scheduling of goals on state timelines, 
time-based and event-based initiation of goal execution, 
delegation for real-time coordinated control, and hardware 
commanding. 

• State determination. The task of estimating system state 
requires interpretation of many sources of evidence—such as 
measurements and commands—given a model of how things 
work. Evidence may be noisy, inconsistent, corrupted, and 
incomplete. State determination is a complicated enough job 
that it is deliberately separated from state control, thereby 
facilitating understandability, verification, and reuse. 

5. RELATED WORK 
In a 1995 joint study between NASA Ames and JPL known as the 
New Millennium Autonomy Architecture Prototype (NewMAAP) 
a number of existing concepts for improving flight software were 
brought together in a prototype form. These concepts included 
goal-based commanding, closed-loop control, model-based 
diagnosis, onboard resource management, and onboard planning. 
When the Deep Space One (DS-1) mission was subsequently 
announced as a technology validation mission, the NewMAAP 
project rapidly segued into the Remote Agent project [3]. In May 
1999 the Remote Agent eXperiment (RAX) flew on DS-1 and 
provided the first in-flight demonstration of the concepts. The 
MDS project was established in April 1998 to define and develop 
an advanced multi-mission data system that unifies the flight, 
ground, and test elements in a common architecture. That 
architecture is shaped with the themes described in this paper, 
some of which were explored and refined by the RAX experience. 

6. SUMMARY AND CONTRIBUTIONS 
In the design of everyday control systems, the “divide and 
conquer” approach decomposes a system into loosely coupled 
subsystems that reflect traditional engineering disciplines such as 
power, thermal, navigation, telecommunication, science, etc. Each 
subsystem “owns” the estimation and control of particular states, 
so those state variables are encapsulated within the subsystem or 
its sub-subsystems, including proxy objects for devices that are 
considered to be part of the subsystem. This approach is 
workable—provided that the subsystems are loosely coupled—
and is appealing because it supports a work breakdown according 
to engineering disciplines. 
In contrast, high-risk control systems differ from everyday control 
systems in that the traditional subsystems are not loosely coupled, 
for two main reasons. First, in an environment where numerous 
activities compete for a share of limited resources, those activities 
must be coordinated in a way that is simply unnecessary when the 
resources are virtually unlimited. Second, in an environment 
where fault-tolerant control is a high priority, control decisions 
often must extend beyond the confines of a single subsystem. In 
short, the fundamental premise behind subsystem 
decomposition—loose coupling—does not hold, so a design based 
on such a decomposition would have to violate its own premise 
numerous times to deal with couplings that cross subsystem 
boundaries. 
In designing for a high-risk control system, analysis of the physics 
of interactions suggests the shape of a more suitable architecture. 
States of the physical world clearly exist, but they do not owe 



their existence to a subsystem; they simply “are”, and the job of 
the control system is to estimate their values as best as possible 
and control them as best as possible, even in the presence of 
faults. Estimation and control both depend on knowledge of how 
things work and how they fail, and that knowledge must be 
expressed somewhere as models of states, commands, and 
measurements. 
The engineering contributions of this paper lie in five design 
principles of the state/model architecture: (1) state variables and 
models as first-class elements rather than subsystems; (2) explicit 
use of models to express the physics effects of couplings; (3) 
clean separation of state determination logic from state control 
logic; (4) explicit management of physical resources (power, 
memory, etc); and (5) the use of state constraints for operational 
control.  
Designing for high-risk systems requires a paradigm shift from 
subsystem-oriented to state-oriented thinking. “Divide and 
conquer” must give way to “state analysis and physics modeling”. 
Managing interactions is the key to good design in this domain, 
and if architecture is to be a help rather than a hindrance, it must 
facilitate representation and reasoning about such interactions. 
It is not the intention of this paper to criticize state encapsulation 
or information hiding but rather to rethink what kinds of states are 
encapsulated in what kinds of classes. In a subsystem-oriented 
architecture the classes represent subsystems and devices, and the 
encapsulated states are seen as states that are wholly owned and/or 
wholly controlled by its subsystem. In a state-oriented architecture 
some classes represent and encapsulate individual physical states 
and have query, update, and notification operations for 
appropriate clients. Other classes represent such clients for state 
estimation, real-time control, and deliberative control. The lesson 
here, in the context of high-risk control systems, is that some state 
variables should not be encapsulated within subsystem objects 
because there is no single subsystem having full responsibility for 
the variable’s value. 

7. EPILOGUE 
Engineering disasters can be great learning experiences. The 
1930s design of the first Tacoma Narrows Bridge followed a 
popular trend toward lightness, structural grace, and flexibility. In 
fact, the original design had a 25 foot deep stiffening truss, but 
was later changed to an eight foot shallow plate girder, resulting 
in a much lighter bridge. Although the bridge was the epitome of 
artistry, it collapsed spectacularly in 1940 due to wind-induced 
vibrations because aerodynamic phenomena had not been 
adequately addressed in the design.  
The same dangers of esthetics versus physics exist in software 
design, especially since the appearance of a design in UML 
diagrams (its esthetics) tends to be more visible to software 
engineers than the physics at play. Another esthetic is the appeal 
of a popular pattern, such as decomposition by traditional 
engineering subsystem; it seems reassuring since it has worked so 
well before. The fact that it clashes with the physics of 
interactions is sometimes hard to see because software is so 
malleable; it’s always easy to add “one more interface” to 
accommodate a newly discovered need. The architectural end 
result becomes an appealing fiction: a tidy set of subsystems that 
hide a tangle of private, back-door interactions. 
As software architects we must be careful about applying 
comfortable metaphors since they have the power to lead us 

astray. Object-oriented analysis is appealing because people can 
engage in anthropomorphic storytelling as a design strategy. That 
encourages secondary metaphors like ‘ownership’, which then 
map into subsystems and encapsulation. The fact that this 
approach works well in everyday control systems encourages 
architects to apply it to all control system problems. With such a 
mindset, it is hard to recognize when a new design problem is 
qualitatively different from previous successfully solved 
problems. The best antidote for this is an objective analysis of the 
phenomena in play and the system-wide couplings that must be 
managed; those are the keys to good design. Only after that is 
done should one consider architectural styles. 
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Figure 1. An architecture based on subsystem decomposition rests on an assumption of loose coupling, where 
interactions among subsystems are handled via hierarchical pathways of control and status. In such an architecture 
state variables are encapsulated within the object that has responsibility for its estimation and control. 

Figure 2. Systems that exhibit complex coupling and high urgency are considered high-risk because they are 
more prone to system accidents. This chart is due to Perrow [4]. 
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Figure 3. The state/model architecture of the Mission Data System emphasizes the central role of state knowledge 
and models, goal-driven operation, and separation of state determination from control. 


